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ABSTRACT 

These lecture notes describe a variety of interesting physical phenomena discovered by means of Direct 
Simulation Monte Carlo (DSMC). 

1.0 DIRECT SIMULATION MONTE CARLO 

Molecular dynamics (MD) is inefficient for simulating dilute gases at the kinetic scale. The main reason is 
that the relevant time scale in this regime is the mean free time but the computational time step in MD is 
limited (by numerical stability) to the collision time. Typically there are many orders of magnitude 
difference between these time scales and much of the computational effort is wasted during the ballistic 
motion between collisions. Molecular dynamics, on the other hand, is efficient for liquids since molecules 
are in a constant state of interaction with their surrounding neighbour molecules. 

Direct Simulation Monte Carlo (DSMC) overcomes the inefficiency of MD by replacing the deterministic 
motion with a stochastic approximation for the collision process. DSMC is able to advance in time steps 
comparable to the mean free time between collisions yet remain accurate at the level of the Boltzmann 
equation. Unlike MD, DSMC is always numerically stable regardless of time step. 

DSMC was developed by Graeme Bird in the late 1960’s and was quickly adopted by the aerospace 
engineering community because the method is accurate for flows with high Knudsen number (Kn), the 
ratio of mean free path to system length. In time the method was applied to an expanded number of 
problems in physics, chemistry, and engineering. Examples range from micron-scale flows (which are also 
high Knudsen number) to granular gases to lunar atmospheres. The algorithm evolved as well, with 
improvements to the numerical accuracy and efficiency as well as extensions to complex chemistry and 
even to dense gases. Nearly 50 years after its introduction DSMC remains the dominant numerical method 
for molecular simulations of dilute gases. 

The details of the DSMC algorithm are presented in detail by Bird [1] and in tutorials [2] (as well as in 
some of the other lectures in this series) but for the sake of completeness the basic scheme is outlined in 
this section. DSMC is a particle-based scheme so a typical calculation initializes the desired geometry 
with boundary conditions and fills the computational volume with random particles. At each time step all 
particles move ballistically according to their assigned velocity; in DSMC collisions are independent of 
these trajectories. Any particles reaching a boundary are processed according to the imposed conditions, 
such as randomly assigning a new velocity to a particle that strikes a thermal wall. If there are open 
boundaries (e.g., wind-tunnel configuration) then particles are generated as inflow and removed if they 
exit through the boundary. 

The core of DSMC is the stochastic (Monte Carlo) evaluation of the collisions. The physical domain is 
partitioned into “collision cells” and during a time step particles are randomly selected as collision 



Surprising Hydrodynamic Results 
Discovered by Means of Direct Simulation Monte Carlo  

2 - 2 RTO-EN-AVT-194 

 

 

partners within each cell. The number of collision to occur in a cell is determined from the local number 
density and temperature (although temperature is used indirectly through average relative velocity). A 
probability that a pair will collide is assigned based on their relative speed and collision cross-section. If 
the collision occurs then the post-collision velocities of the colliding particles are selected at random, 
preserving conservation of momentum and energy. If the particles have internal degrees of freedom, there 
are further details as to the re-assignment of energy; chemical reactions add further steps to the 
computation. 

The most common application of DSMC is in aerospace engineering where high Knudsen number flows 
are common due to the rarefied gas conditions. Continuum approaches of Computational Fluid Dynamics 
(CFD) based on the Navier-Stokes equations (and its variants) are not accurate for these so-called 
“transition” regime flows because the stress tensor and heat flux are not well approximated by linear 
functions of gradients. Another common application of DSMC is in microscopic flows since the mean free 
path for air at standard conditions is roughly 0.05 microns. An example of this type of flow occurs in the 
lubrication layer between the read/write head and the spinning platter of a computer disk drive. [3] The 
head is lifted from the platter by high pressure region that develops between them as the air is dragged by 
the spinning platter. Because the sensitivity of the magnetic response varies exponentially with distance, 
the head-platter spacing is typically less than 20 nanometers and the Knudsen number of the flow is order 
one. 

The next four sections describe four surprising hydrodynamic results that were discovered using Direct 
Simulation Monte Carlo. A common theme is that the author has worked on all four of these problems. 

2.0 ANOMALOUS POISEUILLE FLOW 

Poiseuille flow is the fluid motion in a confined channel, such as a pipe, driven by a force acting parallel 
to the channel. The most common type of forcing is a pressure gradient, with the flow directed from high 
pressure to low. However we will instead consider Poiseuille flow driven by a body force, such as a 
constant gravitational acceleration. [4] Furthermore, we consider a simple rectangular geometry with 
thermal walls left and right and with periodic boundary conditions in the other directions (see Figure 1).  

                

Figure 1: Acceleration-driven Poiseuille flow; flow geometry (left), fluid velocity (right). 

The acceleration is downward so in this configuration the fluid exits the bottom and is reintroduced at the 
top; the hydrodynamic variables (fluid velocity, pressure, etc.) only vary in the y-direction (perpendicular 
to the walls) at the steady state. This state is reached when the momentum added by the body force is 
balanced by the momentum removed by the viscous drag of the walls. Similarly, at the steady state the 
viscous heat produced by the shearing of the fluid is balanced by the cooling of the walls.  
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From Figure 1 we see that the profile of fluid velocity measured in DSMC is in good qualitative 
agreement with the quadratic profile predicted by Navier-Stokes (once the slip velocity at the boundary is 
accounted for) even though the distance between the walls is only 10 mean free paths (Kn = 0.1). However 
the temperature profile (see Figure 2) is qualitatively different in that there is a dip in the centre. Since 
heat is generate within the gas due to shear and can only be removed at the walls this means that near the 
centre of the channel heat is flowing against the temperature gradient (i.e., flowing from cold to hot).  

   

Figure 2: Acceleration-driven Poiseuille flow; temperature (left), pressure (right). 

The pressure profile is also anomalous in that there is a pressure gradient towards the walls yet at the 
steady state there cannot be any fluid velocity in this direction. The Navier-Stokes equations have no term 
in the momentum equation to balance this pressure gradient however at the Burnett level we find 
agreement with the DSMC measurements. [5] For the temperature profile one has to go to even higher 
order, namely super-Burnett theory, to obtain the correct profile [6]; the central dip in temperature is also 
predicted from BGK theory [7]. Finally, pressure-driven driven Poiseuille flow is more complex because 
the flow is not one-dimensional however similar effects are observed [8]; the profiles of temperature and 
pressure disagree with Navier-Stokes predictions but are in good agreement with super-Burnett theory [6].  

3.0 ANOMALOUS COUETTE FLOW 

Couette flow is the flow in a confined channel that is driven by a shearing of the fluid created by the 
motion of the channel walls. In laboratory experiments this is most easily achieved between concentric 
cylinders with the inner cylinder rotating at a constant angular speed (see Figure 3). There are a number of 
interesting hydrodynamic instabilities that occur in cylindrical Couette flow however we will restrict our 
attention to low Reynolds numbers, well below any instability. As in the previous section we consider 
high Knudsen numbers (Kn > 0.1) and investigate the resulting velocity profile of the gas. 

The velocity of a gas moving past a solid surface has a velocity at that surface that differs from the 
surface’s velocity, even if the solid fully thermalizes molecules reflecting from it. This effect was 
predicted by Maxwell and confirmed by Knudsen; the physical origin is the difference between the 
impinging and reflected velocity distributions of the gas molecules due to gradients. We may define a slip 
length (see Figure 3), which is the distance within the wall at which the velocity profile of the gas 
extrapolates to match the wall’s velocity. For a fully thermalizing surface the slip length is approximately 
one mean free path so it is only significant for high Kn flows. Slip increases if some particle reflect 
specularly and we define the accommodation coefficient, α, for a surface as the fraction of thermalized 
(non-specular) reflections from that surface. [9] 



Surprising Hydrodynamic Results 
Discovered by Means of Direct Simulation Monte Carlo  

2 - 4 RTO-EN-AVT-194 

 

 

                      

Figure 3: Cylindrical Couette flow geometry (left); Slip length for a stationary thermal wall (right). 

DSMC simulations of cylindrical Couette flow confirm that when the accommodation coefficient is one 
(fully thermalizing) the fluid velocity is greatest near the inner (moving) cylinder and decreases with 
increasing distance from the center (see Figure 4). On the other hand when α < 0.1 the angular speed 
increases with increasing radial distance; when the walls are nearly completely specular (α = 0.01) the gas 
rotates like a solid body (v = ωr). This result is not anomalous; it was predicted by Maxwell over a century 
ago as a consequence of the centrifugal force acting as a body force on the fluid. 

         

Figure 4: Couette flow regimes (left); fluid velocity versus radius (right). 

The unexpected result discovered by DSMC is that for a certain range of parameters the fluid velocity has 
a minimum speed within the fluid (see Figure 5). [10] This effect occurs when the walls are 80%-90% 
specular and has been rigorously confirmed using BGK theory. [11] At present there is no simple physical 
interpretation for this phenomenon, which involves the interplay of the curved geometry and the 
asymmetric velocity distribution in the gas. Yet it highlights the unusual and unexpected behaviour that 
can arise in transition flows. 
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Figure 5: Anomalous Couette flow (left); fluid velocity versus radius (right). 

3.0 ANOMALOUS TEMPERATURE GRADIENT FLOW 

In DSMC, as in all molecular simulations, the computation calculates the positions and velocities of 
particles as functions of time. But the variables of interest are hydrodynamic quantities, such as pressure 
and temperature. For some quantities the transformation is unambiguous, for example the mass density is 
the total mass of particles in a local region divided by the region’s volume. Other quantities, such as 
temperature, entropy, Gibbs free energy, etc., are less obvious. Even fluid velocity has two interpretations. 

The intuitive measure of fluid velocity is the average velocity of particles in a local region (i.e., a cell), 
which we may write as, 

 

 

where the sum is over particles within the cell. The same result is obtained from the centre of mass 
velocity in the cell, 

 

 

These two equivalent expressions give the instantaneous fluid velocity in the cell; the mean value over S 
samples (either time-averages or ensemble-averaged) may be written as, 

 

 

Yet this is not the only way to define the mean fluid velocity. In fact it is not the definition normally used 
in DSMC. Instead, the mean fluid velocity is calculated as a cumulative average, 
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These expressions for the mean fluid velocity are not equivalent because the former is the average of a 
ratio (<momentum/mass>) and the latter is the ratio of the averages (<momentum>/<mass>). 

Consider a closed box filled with a dilute gas and subjected to a constant temperature gradient imposed by 
thermal walls. Using the cumulative mean to define fluid velocity, DSMC calculations yield the expected 
result: no flow at the steady state. However, the mean instantaneous fluid velocity gives an anomalous 
result: The fluid has a velocity that rises quadratically to a maximum in the centre of the system and the 
magnitude of this flow varies linearly with the temperature gradient (see Figure 6). [12] 

                  

Figure 6: Anomalous flow in a temperature gradient. Mean instantaneous  
velocity (left); Cumulative mean fluid velocity (right). 

The physical origin of this effect is that out of equilibrium, as in a temperature gradient, the fluctuations of 
mass density and of momentum are correlated. At equilibrium, density, fluid velocity, and temperature are 
conjugate hydrodynamic variables; when measured simultaneously they are uncorrelated. However, out of 
equilibrium there are asymmetries that produce correlations, which can be computed using Landau-
Lifshitz fluctuating hydrodynamics and that are confirmed by DSMC simulations [13]. For example, in a 
temperature gradient the density fluctuates above average when the fluid velocity fluctuates in the 
direction against the gradient with; specifically, density and fluid velocity fluctuations are correlated as, 

 

The two definitions of fluid velocity may be related as, 

 

 

DSMC simulation results verify that the anomalous fluid velocity is entirely explained by this non-
equilibrium correlation of fluctuations. 

Finally, it should be noted that a similar bias occurs when using any instantaneous hydrodynamic quantity, 
such as temperature or pressure.[14] A similar bias is also created if boundary conditions, such as inflow 
from a reservoir, do not correctly include thermodynamic fluctuations. [15] Because the error goes as 1/N, 
where N is the number of particles in the sampling cell, for engineering applications it may be acceptable 
compared with other approximations. However, it is an effect that all DSMC users should be wary of; we 
first thought it was a bug in the code! 

4.0 ANOMALOUS DIFFUSON FLOW 

As discussed in the previous section, fluctuations are enhanced when a system is out of equilibrium, such 
as when a gradient is imposed by boundary conditions. Figure 7 illustrates this effect, showing snap-shots 
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for an equilibrium system with a concentration gradient induced by gravity and a non-equilibrium system 
with a comparable concentration gradient imposed by boundary conditions. Clearly the fluctuations are 
significantly greater in the non-equilibrium steady-state scenario. The effect of fluctuations is even more 
noticeable in non-steady problems, such as the mixing of initially segregated gases (see Figure 8). These 
giant fluctuations in diffusive mixing have been observed in laboratory experiments, creating variations 
visible to the naked eye. [16] 

 

Figure 7: Equilibrium concentration gradient induced by gravity (above); 
Steady-state concentration gradient imposed by boundary conditions (below) 

 

Figure 8: Snapshots of the concentration in the diffusive mixing of two gases (red and blue) at  
t = 1, 4, 10 (top, middle, bottom), starting from a flat interface (phase-separated system) at t = 0. 

An unexpected consequence of these non-equilibrium fluctuations is that they enhance the effective rate of 
diffusion. The simplest case is “red-blue” diffusion in which the two species are physically identical. In 
this case the fluctuations of fluid velocity are the same as in equilibrium. Formulated in terms of 
fluctuating hydrodynamics the concentration equation is coupled to the velocity; in the isothermal, 
incompressible approximation the correlation of concentration-velocity fluctuations is, in Fourier space, 
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We see that there are two contributions to this flux: the “bare” diffusion coefficient D0 and the 
contribution due to the correlation of concentration and velocity fluctuations. Because the latter is also 
linear in the concentration gradient it may be written as an enhancement to the diffusion coefficient, ΔD. 
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For a slab geometry (Lz <<  Lx <<  Ly) we have that ΔD ∝ ln Lx. That is, as we make the system wider in a 
direction perpendicular to the gradient the diffusion is enhanced; ΔD increases because the integral over 
wavenumber extends to smaller values of k as the system width increases. This enhanced diffusion is 
anomalous since, in the deterministic hydrodynamics, the diffusion coefficient is independent of the 
system geometry. 

This effect is seen in DSMC simulations where we may separate the contributions to the concentration 
flux. Specifically, in DSMC we may independently measure the averages and correlations of species 
density and velocity, as well as total mass flux of each species. As seen in Figure 9, the effective diffusion 
coefficient increases in qualitative agreement with theory up to system widths approaching the system 
height (Lx ≈ Ly). [17] 

 

Figure 9: Simulation geometry (left). DSMC measurements of bare and total  
effective diffusion coefficients as a function of system width (right) 

5.0 CONCLUDING REMARKS 

Direct Simulation Monte Carlo is an excellent numerical tool for both applications and for basic research. 
Given DSMC’s computational efficiency even modest resources are adequate; except for the results in 
Figure 9 all of the results presented in these notes may be reproduced in a day or two using a laptop. 
Furthermore, DSMC is relatively simple to program and modify; public-domain source codes are available 
at a number of sites (including the author’s). Finally, DSMC is an excellent educational tool for teaching 
kinetic theory since the algorithm is as simple as molecular dynamics yet is efficient enough to yield basic 
results, such as the measurement of viscosity for a hard sphere gas, in a matter of minutes.  
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